Two boundary centralizer algebras for q(n)

Jieru Zhu PhD thesis (advisor: Jonathan Kujawa)

University at Buffalo

The Type Q Lie superalgebra

$$q = q(n) = \left\{ \begin{pmatrix} A & B \\ B & A \end{pmatrix} | A, B \in \operatorname{Mat}_{n,n}(\mathbb{C}) \right\}$$
$$q_{\overline{0}} = \left\{ \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} | A \in \operatorname{Mat}_{n,n}(\mathbb{C}) \right\},$$
$$q_{\overline{1}} = \left\{ \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix} | B \in \operatorname{Mat}_{n,n}(\mathbb{C}) \right\}.$$

with

$$[x,y] = xy - (-1)^{\overline{x} \cdot \overline{y}} yx$$

 $V = \mathbb{C}^{2n}$: $\mathfrak{q}(n)$ -module action: matrix multiplication on the left. M, N: $\mathfrak{q}(n)$ -module

$$\Delta: U(\mathfrak{q}(n)) \to U(\mathfrak{q}(n)) \otimes U(\mathfrak{q}(n))$$
$$x \mapsto 1 \otimes x + x \otimes 1$$

$$\mathfrak{q}(n) \curvearrowright M \otimes N \otimes V^{\otimes d} \curvearrowleft ??$$

A superalgebra $S = S_{\overline{0}} \oplus S_{\overline{1}}$,

$$S_{\overline{i}} \cdot S_{\overline{j}} \subset S_{\overline{i+j}}, \quad \overline{i}, \overline{j} \in \mathbb{Z}_2$$

The degenerate two boundary affine Hecke-Clifford algebra \mathcal{B}_d : generated by 1) polynomial rings $\mathbb{C}[\tilde{x}_1, \ldots, \tilde{x}_d]$, $\mathbb{C}[\tilde{y}_1, \ldots, \tilde{y}_d]$, $\mathbb{C}[\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_d]$ (polynomial generators: odd) 2) odd c_1, \ldots, c_d

3) even $s_1, ..., s_{d-1}$

subject to

- 1) symmetric group relations, polynomial ring relations
- 2) $c_i^2 = -1$, $c_i c_j = -c_j c_i$ (Clifford relations).
- 3) "Hecke" relations such as

$$s_i \tilde{x}_i = \tilde{x}_{i+1} s_{i+1} + (c_i - c_{i+1})$$

4) "Two boundary" type relations such as

$$(\tilde{z}_0 - \tilde{z}_1 - \dots - \tilde{z}_i + \tilde{x}_i)\tilde{x}_1 = -\tilde{x}_1(\tilde{z}_0 - \tilde{z}_1 - \dots - \tilde{z}_i + \tilde{x}_i)$$

Theorem (Super Schur's Lemma)

If W, U: simple \mathfrak{g} -module, then

$$\operatorname{Hom}_{\mathfrak{q}(n)}(W,U) = \begin{cases} \mathbb{C} \operatorname{id} & \text{if } W \simeq U \text{ of } Type \ M \\ \mathbb{C} \operatorname{id} \oplus \mathbb{C}c & \text{if } W \simeq U \text{ of } Type \ Q \\ 0 & W \not\simeq U \end{cases}$$

where $c \in \operatorname{End}_{\mathfrak{q}(n)}(W)$ is an odd map.

Moreover, $V = \mathbb{C}^{2n}$ is of Type Q, and the map c can be taken as left multiplication by

$$c = \begin{bmatrix} 0 & -1_n \\ 1_n & 0 \end{bmatrix}$$

A Casimir element $\Omega \in \mathfrak{q}(n) \otimes \mathfrak{q}(n)$ Ω acts on $T_1 \otimes T_2$

$$x.(\Omega.(t_1 \otimes t_2)) = (-1)^{\overline{x} \cdot \overline{\Omega}} \Omega.(x.(t_1 \otimes t_2))$$

 $x\in\mathfrak{g}$ homogeneous

Lemma (Z.)

$$\Omega^2 = \frac{1}{3} (\Delta(z_2) - z_2 \otimes 1 - 1 \otimes z_2 + 2z_1 \otimes z_1).$$

An action of \mathcal{B}_d

Theorem (Z)

Let M, N be arbitrary q(n)-modules. There is a superalgebra homomorphism:

$$\mathcal{B}_{d} \to \operatorname{End}_{\mathfrak{q}(n)}(M \otimes N \otimes V^{\otimes d})$$
$$\tilde{x}_{i} \mapsto \Omega_{M \otimes V^{i-1}, V}$$
$$\tilde{y}_{i} \mapsto \Omega_{N \otimes V^{i-1}, V}$$
$$\tilde{z}_{i} \mapsto \Omega_{M \otimes N \otimes V^{i-1}, V} \quad (1 \le i \le d)$$
$$\tilde{z}_{0} \mapsto \Omega_{M, N}$$

and s_i acts as signed swap, c_i acts as the map c on the *i*-th factor.

(Sergeev) $V^{\otimes d}$, (Hill-Kujawa-Sussan) $M \otimes V^{\otimes d}$

Polynomial representations of $\mathfrak{q}(n)$: Direct summands of $V^{\otimes e}$ for some $e \in \mathbb{Z}_{\geq 0}$. This subcategory is semisimple, closed under \otimes . (Berele-Regev, Sergeev) Irreducibles $L(\lambda)$: parametrized by "shifted Young diagram" λ

Notice: a box added to α has content na box added to β has content p or 0

An action of \mathcal{H}_n^p

$$\begin{aligned} \mathcal{H}_d^p &= \mathcal{B}_d^N / \sim \text{ under further relations} \\ & (\tilde{x_1})^2 = n(n+1) \\ & (\tilde{y_1})^2 ((\tilde{y_1})^2 - p(p+1)) = 0 \end{aligned}$$

Theorem

The action of \mathcal{B}_d factors through \mathcal{H}_n^p and induces further a homomorphism of superalgebras

$$\mathcal{H}_n^p \to \operatorname{End}_{\mathfrak{q}(n)}(L(\alpha) \otimes L(\beta) \otimes V^{\otimes d})$$

$$L(\lambda) \otimes L(\mu) \simeq \bigoplus_{\gamma} L(\gamma)^{\oplus c_{\lambda,\mu}^{\gamma}}$$

(Brundan, Stembridge) Combinatorial formula for $c_{\lambda,\mu}^{\gamma}$. (Bessenrodt) Cases when $c_{\lambda,\mu}^{\gamma}$ is as small as possible. The Bratteli diagram: a directed graph Vertices $\cup_{i=-1}^{\infty} \mathcal{P}_i$

$$\mathcal{P}_{-1} = \{\alpha\}$$

$$\mathcal{P}_{0} = \{\gamma \mid L(\gamma) \text{ is a summand of } L(\alpha) \otimes L(\beta)$$

(with multiplicity 2)}(combinatorial condition)

$$\alpha \to \mu, \forall \mu \in \mathcal{P}_{0}$$

 $\mathcal{P}_{i} = \{ \gamma \mid L(\gamma) \text{ is a summand of } L(\lambda) \otimes V, \quad \exists \lambda \in \mathcal{P}_{i-1}$ (with multiplicity 2)} $= \{ \gamma \mid \gamma = \lambda + \Box, \quad \exists \lambda \in \mathcal{P}_{i-1} \} \text{(Pieri Rule)}$ $\lambda \to \gamma \text{ if } \gamma = \lambda + \Box$

Centralizing Actions Combinatorial Construction

Centralizing Actions Combinatorial Construction

Let $\lambda \in \mathcal{P}_d$.

$$\begin{split} \Gamma^{\lambda} &= \{ \text{paths from } \alpha \text{ to } \lambda \} \\ &= \{ \text{tableau of a skew shape with entries } 1, 2, \dots, d. \} \\ \text{For } 0 &\leq i \leq d-1, \ T \in \Gamma^{\lambda}. \\ s_i.T &= \begin{cases} \text{unique other path which differs from } T \text{ at row } i \\ \star \text{ otherwise} \end{cases} \end{split}$$

Fix $\lambda \in \mathcal{P}_d$, $f: \Gamma^{\lambda} \to \mathbb{C}$ such that

 $f(T)f(s_0.T) =$ an explicit function in $\kappa_T(i)$

Centralizing Actions Combinatorial Construction

The modules \mathcal{D}_f^{λ}

Recall
$$\mathcal{H}_d^p = \mathcal{B}_d / \sim$$
.
Define $\mathcal{D}_f^{\lambda} = \bigoplus_{T \in \Gamma^{\lambda}} \operatorname{Cl}_d v_T$ a free Cl_d -module.

Theorem (Z.)

 \mathcal{H}_d^p has an alternative presentation using generators $x_1, z_0, \ldots, z_d, s_1, \ldots, s_{d-1}, c_1, \ldots, c_d$.

parity of v_T : depends on the zero-th edge in T.

Let

$$z_0.v_T = (\text{function in the zero-th edge in } T)v_T$$
$$z_i.v_T = \sqrt{c_T(i)(c_T(i)+1)}v_T \quad 1 \le i \le d$$

Recall $x_1 z_j = z_j x_1, \ j \ge 2$. x_1 acts on

$$\langle v_T, c_0 c_1 v_T, c_0 v_{s_0,T}, c_1 v_{s_0,T} \rangle$$

via an explicit matrix in terms of T. s_i acts on

$$\langle v_T, c_0 c_1 v_T, v_{s_i.T}, c_0 c_1 v_{s_i.T} \rangle$$

with an explicit matrix as in Hill-Kujawa-Sussan.

Theorem (Z.)

 $\mathcal{D}_{f}^{\lambda}$ admits a well-defined action of \mathcal{H}_{d}^{p} given as above. Furthermore, the action of x_{1} , s_{i} is uniquely determined by the action of z_{0}, \ldots, z_{d} , up to a choice of f.

Theorem (Z.)

 $\mathcal{D}_{f}^{\lambda}$ is irreducible. $\lambda \not\simeq \mu: \mathcal{D}^{\lambda} \neq \mathcal{D}^{\mu}$ $\mathcal{D}_{f}^{\lambda}$ is an infinite family of nonisomorphic modules.

Recall

$$\rho: \mathcal{H}_n^p \to \mathcal{Z}_d := \operatorname{End}_{\mathfrak{q}(n)}(L(\alpha) \otimes L(\beta) \otimes V^{\otimes d})$$

 \mathcal{L}^{λ} : irreducible \mathcal{Z}_d -summands of $L(\alpha) \otimes L(\beta) \otimes V^{\otimes d}$

Theorem (Z.)

$$\operatorname{Res}_{\rho(\mathcal{H}_d^p)}^{\mathcal{Z}_d} \mathcal{L}^{\lambda} \simeq \mathcal{D}_f^{\lambda} \text{ for some } f.$$

Corollary (Z.)

 $\operatorname{Res}_{\rho(\mathcal{H}_d^p)}^{\mathcal{Z}_d} \mathcal{L}^{\lambda}$ is irreducible.

 $\rho(\mathcal{H}_d^p) \subset \mathcal{Z}_d$: "dense" subalgebra.