Two boundary centralizer algebras for $\mathfrak{q}(n)$

Jieru Zhu

PhD thesis (advisor: Jonathan Kujawa)

University at Buffalo

The Type Q Lie superalgebra

$$
\begin{aligned}
\mathfrak{q} & =\mathfrak{q}(n)=\left\{\left.\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right) \right\rvert\, A, B \in \operatorname{Mat}_{n, n}(\mathbb{C})\right\} \\
\mathfrak{q}_{\overline{0}} & =\left\{\left.\left(\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right) \right\rvert\, A \in \operatorname{Mat}_{n, n}(\mathbb{C})\right\} \\
\mathfrak{q}_{\overline{1}} & =\left\{\left.\left(\begin{array}{ll}
0 & B \\
B & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Mat}_{n, n}(\mathbb{C})\right\} .
\end{aligned}
$$

with

$$
[x, y]=x y-(-1)^{\bar{x} \cdot \bar{y}} y x
$$

$V=\mathbb{C}^{2 n}: \mathfrak{q}(n)$-module action: matrix multiplication on the left. $M, N: \mathfrak{q}(n)$-module

$$
\begin{aligned}
\Delta: U(\mathfrak{q}(n)) & \rightarrow U(\mathfrak{q}(n)) \otimes U(\mathfrak{q}(n)) \\
x & \mapsto 1 \otimes x+x \otimes 1
\end{aligned}
$$

$$
\mathfrak{q}(n) \curvearrowright M \otimes N \otimes V^{\otimes d} \curvearrowleft ? ?
$$

A superalgebra $S=S_{\overline{0}} \oplus S_{\overline{1}}$,

$$
S_{\bar{i}} \cdot S_{\bar{j}} \subset S_{\overline{i+j}}, \quad \bar{i}, \bar{j} \in \mathbb{Z}_{2}
$$

The degenerate two boundary affine Hecke-Clifford algebra \mathcal{B}_{d} : generated by

1) polynomial rings $\mathbb{C}\left[\tilde{x}_{1}, \ldots, \tilde{x}_{d}\right], \mathbb{C}\left[\tilde{y}_{1}, \ldots, \tilde{y}_{d}\right], \mathbb{C}\left[\tilde{z}_{0}, \tilde{z}_{1}, \ldots, \tilde{z}_{d}\right]$ (polynomial generators: odd)
2) odd c_{1}, \ldots, c_{d}
3) even s_{1}, \ldots, s_{d-1}
subject to
4) symmetric group relations, polynomial ring relations
5) $c_{i}^{2}=-1, c_{i} c_{j}=-c_{j} c_{i}$ (Clifford relations).
6) "Hecke" relations such as

$$
s_{i} \tilde{x}_{i}=\tilde{x}_{i+1} s_{i+1}+\left(c_{i}-c_{i+1}\right)
$$

4) "Two boundary" type relations such as

$$
\left(\tilde{z}_{0}-\tilde{z}_{1}-\cdots-\tilde{z}_{i}+\tilde{x}_{i}\right) \tilde{x}_{1}=-\tilde{x}_{1}\left(\tilde{z}_{0}-\tilde{z}_{1}-\cdots-\tilde{z}_{i}+\tilde{x}_{i}\right)
$$

Theorem (Super Schur's Lemma)

If W, U : simple \mathfrak{g}-module, then

$$
\operatorname{Hom}_{\mathfrak{q}(n)}(W, U)=\left\{\begin{array}{l}
\mathbb{C} \text { id } \quad \text { if } W \simeq U \text { of Type } M \\
\mathbb{C} i d \oplus \mathbb{C} c \quad \text { if } W \simeq U \text { of Type } Q \\
0 \quad W \nsucceq U
\end{array}\right.
$$

where $c \in \operatorname{End}_{\mathfrak{q}(n)}(W)$ is an odd map.
Moreover, $V=\mathbb{C}^{2 n}$ is of Type Q , and the map c can be taken as left multiplication by

$$
c=\left[\begin{array}{cc}
0 & -1_{n} \\
1_{n} & 0
\end{array}\right]
$$

A Casimir element $\Omega \in \mathfrak{q}(n) \otimes \mathfrak{q}(n)$
Ω acts on $T_{1} \otimes T_{2}$

$$
x .\left(\Omega .\left(t_{1} \otimes t_{2}\right)\right)=(-1)^{\bar{x} \cdot \bar{\Omega}} \Omega \cdot\left(x \cdot\left(t_{1} \otimes t_{2}\right)\right)
$$

$x \in \mathfrak{g}$ homogeneous
Lemma (Z.)

$$
\Omega^{2}=\frac{1}{3}\left(\Delta\left(z_{2}\right)-z_{2} \otimes 1-1 \otimes z_{2}+2 z_{1} \otimes z_{1}\right)
$$

An action of \mathcal{B}_{d}

Theorem (Z)

Let M, N be arbitrary $\mathfrak{q}(n)$-modules. There is a superalgebra homomorphism:

$$
\begin{aligned}
\mathcal{B}_{d} & \rightarrow \operatorname{End}_{\mathfrak{q}(n)}\left(M \otimes N \otimes V^{\otimes d}\right) \\
\tilde{x}_{i} & \mapsto \Omega_{M \otimes V^{i-1}, V} \\
\tilde{y}_{i} & \mapsto \Omega_{N \otimes V^{i-1}, V} \\
\tilde{z}_{i} & \mapsto \Omega_{M \otimes N \otimes V^{i-1}, V} \quad(1 \leq i \leq d) \\
\tilde{z}_{0} & \mapsto \Omega_{M, N}
\end{aligned}
$$

and s_{i} acts as signed swap, c_{i} acts as the map c on the i-th factor.
(Sergeev) $V^{\otimes d}$, (Hill-Kujawa-Sussan) $M \otimes V^{\otimes d}$

Polynomial representations of $\mathfrak{q}(n)$:
Direct summands of $V^{\otimes e}$ for some $e \in \mathbb{Z}_{\geq 0}$.
This subcategory is semisimple, closed under \otimes.
(Berele-Regev, Sergeev) Irreducibles $L(\lambda)$: parametrized by "shifted Young diagram" λ

$$
\begin{aligned}
& \lambda=\square \square \\
& \hline \square \\
& \square
\end{aligned}
$$

Let $\alpha=\square \square$ (staircase of height n)
$\beta=\square \square|\square| \square \square$ (single row with p boxes)
Notice: a box added to α has content n
a box added to β has content p or 0

An action of \mathcal{H}_{n}^{p}

$\mathcal{H}_{d}^{p}=\mathcal{B}_{d}^{N} / \sim$ under further relations

$$
\begin{aligned}
& \left(\tilde{x_{1}}\right)^{2}=n(n+1) \\
& \left(\tilde{y_{1}}\right)^{2}\left(\left(\tilde{y_{1}}\right)^{2}-p(p+1)\right)=0
\end{aligned}
$$

Theorem

The action of \mathcal{B}_{d} factors through \mathcal{H}_{n}^{p} and induces further a homomorphism of superalgebras

$$
\mathcal{H}_{n}^{p} \rightarrow \operatorname{End}_{\mathfrak{q}(n)}\left(L(\alpha) \otimes L(\beta) \otimes V^{\otimes d}\right)
$$

$$
L(\lambda) \otimes L(\mu) \simeq \bigoplus_{\gamma} L(\gamma)^{\oplus c_{\lambda, \mu}^{\gamma}}
$$

(Brundan, Stembridge) Combinatorial formula for $c_{\lambda, \mu}^{\gamma}$. (Bessenrodt) Cases when $c_{\lambda, \mu}^{\gamma}$ is as small as possible.

The Bratteli diagram: a directed graph
Vertices $\cup_{i=-1}^{\infty} \mathcal{P}_{i}$

$$
\begin{aligned}
\mathcal{P}_{-1} & =\{\alpha\} \\
\mathcal{P}_{0} & =\{\gamma \mid L(\gamma) \text { is a summand of } L(\alpha) \otimes L(\beta) \\
& \text { (with multiplicity } 2)\}(\text { combinatorial condition) } \\
& \alpha \rightarrow \mu, \forall \mu \in \mathcal{P}_{0}
\end{aligned}
$$

$$
\mathcal{P}_{i}=\left\{\gamma \mid L(\gamma) \text { is a summand of } L(\lambda) \otimes V, \quad \exists \lambda \in \mathcal{P}_{i-1}\right.
$$

(with multiplicity 2) $\}$

$$
\begin{aligned}
& =\left\{\gamma \mid \gamma=\lambda+\square, \quad \exists \lambda \in \mathcal{P}_{i-1}\right\}(\text { Pieri Rule }) \\
& \lambda \rightarrow \gamma \text { if } \gamma=\lambda+\square
\end{aligned}
$$

Let $\lambda \in \mathcal{P}_{d}$.

$$
\begin{aligned}
\Gamma^{\lambda} & =\{\text { paths from } \alpha \text { to } \lambda\} \\
& =\{\text { tableau of a skew shape with entries } 1,2, \ldots, d .\}
\end{aligned}
$$

For $0 \leq i \leq d-1, T \in \Gamma^{\lambda}$.

$$
s_{i} \cdot T=\left\{\begin{array}{l}
\text { unique other path which differs from } T \text { at row } i \\
\star \quad \text { otherwise }
\end{array}\right.
$$

Fix $\lambda \in \mathcal{P}_{d}, f: \Gamma^{\lambda} \rightarrow \mathbb{C}$ such that

$$
f(T) f\left(s_{0} \cdot T\right)=\text { an explicit function in } \kappa_{T}(i)
$$

The modules $\mathcal{D}_{f}^{\lambda}$

Recall $\mathcal{H}_{d}^{p}=\mathcal{B}_{d} / \sim$.
Define $\mathcal{D}_{f}^{\lambda}=\bigoplus \mathrm{Cl}_{d} v_{T}$ a free Cl_{d}-module.
$T \in \Gamma^{\lambda}$

Theorem (Z.)

\mathcal{H}_{d}^{p} has an alternative presentation using generators $x_{1}, z_{0}, \ldots, z_{d}, s_{1}, \ldots, s_{d-1}, c_{1}, \ldots, c_{d}$.
parity of v_{T} : depends on the zero-th edge in T.

Let

$$
\begin{aligned}
& z_{0} \cdot v_{T}=(\text { function in the zero-th edge in } T) v_{T} \\
& z_{i} \cdot v_{T}=\sqrt{c_{T}(i)\left(c_{T}(i)+1\right)} v_{T} \quad 1 \leq i \leq d
\end{aligned}
$$

Recall $x_{1} z_{j}=z_{j} x_{1}, j \geq 2$.
x_{1} acts on

$$
\left\langle v_{T}, \quad c_{0} c_{1} v_{T}, \quad c_{0} v_{s_{0} . T}, \quad c_{1} v_{s_{0} . T}\right\rangle
$$

via an explicit matrix in terms of T.
s_{i} acts on

$$
\begin{array}{llll}
\left\langle v_{T}\right. & c_{0} c_{1} v_{T}, & v_{s_{i} \cdot T}, & \left.c_{0} c_{1} v_{s_{i} . T}\right\rangle
\end{array}
$$

with an explicit matrix as in Hill-Kujawa-Sussan.

Theorem (Z.)

$\mathcal{D}_{f}^{\lambda}$ admits a well-defined action of \mathcal{H}_{d}^{p} given as above.
Furthermore, the action of x_{1}, s_{i} is uniquely determined by the action of z_{0}, \ldots, z_{d}, up to a choice of f.

Theorem (Z.)

$\mathcal{D}_{f}^{\lambda}$ is irreducible.
$\lambda \nsim \mu: \mathcal{D}^{\lambda} \neq \mathcal{D}^{\mu}$
$\mathcal{D}_{f}^{\lambda}$ is an infinite family of nonisomorphic modules.

Recall

$$
\rho: \mathcal{H}_{n}^{p} \rightarrow \mathcal{Z}_{d}:=\operatorname{End}_{\mathfrak{q}(n)}\left(L(\alpha) \otimes L(\beta) \otimes V^{\otimes d}\right)
$$

Theorem (Z.)

$\operatorname{Res}_{\rho\left(\mathcal{H}_{d}^{p}\right)}^{\mathcal{Z}_{d}} \mathcal{L}^{\lambda} \simeq \mathcal{D}_{f}^{\lambda}$ for some f.
Corollary (Z.)
$\operatorname{Res}_{\rho\left(\mathcal{H}_{d}^{p}\right)}^{\mathcal{Z}_{d}} \mathcal{L}^{\lambda}$ is irreducible.
$\rho\left(\mathcal{H}_{d}^{p}\right) \subset \mathcal{Z}_{d}$: "dense" subalgebra.

