(Double -Centralizer Properties for The
Drinfeld Double of The Taft Algebra

- Georgia Benhart, Rehha Biswal,

Ellen Kirkman, Van Nguyen, Jieru Thu*
Women in Commutative Algebra and Representation Theory

Virtual JMM 2011
© The Big Picture

Temperley-lieb algebra $V^{\otimes k}$
Dribfeld Double of the Taft algebra
motivation:

$$
\left(\mathbb{C} S_{d}, g_{n}(\mathbb{C})\right) \text { - Schur-weyl duality }
$$

The Drinfeld double of the Taft alg -2over ilk

Setup: $\mathbb{k}=\mathbb{\pi}$. char $\mathbb{k}=0 \quad q \in \mathbb{k}$
q: primative $n^{\text {th }}$ root of unity
Definition: $\quad D_{n}:=\langle a, b, c, d \mid \sim\rangle$
relations: $\quad\left[a b=q^{-1} b a \quad a c=q^{-1} c a\right.$
$d b=q b d \quad d c=q c d$
$d a-q a d=1-b c \quad b c=c b$
$a^{n}=d^{n}=0 \quad c^{n}=d^{n}=1$
®
$\left(D_{n}, \Delta, S, \varepsilon\right)$ is a Hopf algebra b, c : grouplike

Remark: D_{n} is non semisimple
\forall (Chen) Dr has a complete list of
simples $V(\ell, r) \quad 1 \leq \ell \leq n$
projectives $P(\ell, r) \quad 0 \leqslant r \leqslant n-1$

Fusion Rules

$$
V(l, r) \otimes V\left(1, r^{\prime}\right) \simeq V\left(l, r+r^{\prime}\right)
$$

etc...

* (Chen) D_{n} is Quasitriangular, i.e.
$\exists R \in D_{n} \otimes D_{n}$ satisfying axioms by Drinfeld

1) if $M, N: D_{n}-\bmod$
$R \in \operatorname{End}(M \otimes N)$ is D_{n}-linear
2)

$$
\begin{aligned}
& V: D_{n}-\bmod \\
& R_{i}{ }^{\otimes} V^{\otimes k}: V \otimes \cdots \quad V_{\tau_{R}}^{i} \otimes V^{i+1} \otimes \cdots \otimes V
\end{aligned}
$$

Braid Group Action
(Ram-Ledule
197) $\quad R_{i}=\sigma R_{i} \quad \sigma$: Swap
then \tilde{R}_{i} Satisfy the Braid Relations.

Setup: $q^{1 / 2}=$ root of the eq $x^{2}-q=0$ (well -def up to a sign)

$$
\xi=-\left(q^{1 / 2}+q^{-1 / 2}\right)
$$

(The Temperley-Lieb Algebra
$T L_{k}(\xi)$: generators $t_{1}, t_{2}, \ldots, t_{k-1}$
\& relations

$$
\begin{aligned}
& \text { Braid } \\
& \text { relations }
\end{aligned}\left\{\begin{array}{l}
t_{i} t_{j}=t_{j} t_{i} \quad|i-j|>1 \\
t_{i} t_{i+1} t_{i}-t_{i}=t_{i+1} t_{i} t_{i+1}-t_{i} \\
t_{i}^{2}=\xi_{i}
\end{array}\right\} \begin{aligned}
& \text { Type A } \\
& \text { Heckle relations }
\end{aligned}
$$

$$
t_{i} t_{i+1} t_{i}-t_{i}=t_{i+1} t_{i} t_{i+1}-t_{i}=0
$$

Theorem (BBKNZ)
\exists well-defined D_{n}-linear action of $T L_{k}(s)$ on $V(2, r)^{\otimes k}$
ie.

$$
\begin{aligned}
T_{L_{k}}(\xi) & \longrightarrow \operatorname{End}_{D_{n}}\left(V(2, r)^{\otimes k}\right) \\
t_{i} & \longmapsto q^{1 / 2}\left(q^{-r(r+1)} \tilde{R}_{i}-1\right)
\end{aligned}
$$

The RIBBON Stricture on D_{n}
(Kauffman-Rad ford 193)
D_{n} is ribbon $\Leftrightarrow n$: odd
i.e. $\exists v$ s.t. $v^{2}=u$
u: "naive" central element obtained from R

D Digression
D_{n}-mod: The category of D_{n}-modules is Ribbon (n : odd)

$$
v=\frac{E}{\theta}
$$

Theorem (BBKNZ)

$$
v=\mu(b c)^{\frac{n-1}{2}}
$$

Main Result
Fix $V\left(2, \frac{n-1}{2}\right)$ Note: $V\left(2, \frac{n-1}{2}\right) \simeq V^{*}\left(2, \frac{n-1}{2}\right)$

Theorem (BBKNZ)

$$
T L_{k}(\xi) \rightarrow \operatorname{End}_{D_{n}}\left(V\left(2, \frac{n-1}{2}\right)^{\otimes k}\right)
$$

a) is ALWAYS injective
b) is surjective ONLY WHEN $k \leq 2(n-1)$ (\Longleftrightarrow)

Injectivity Statement
TFAE:

1) $\varphi: T L_{k} \rightarrow$ End $D_{n}\left(V\left(2, \frac{n-1}{2}\right)^{\otimes k}\right)$ is INJECTIVE
2) $\operatorname{ker} \rho=0$
3) $x \in T l_{k}(\xi) \quad \varphi(x)=0 \Rightarrow x=0$
4) if $x \neq 0$ Then $f(x) \neq 0$ i.e.

$$
\exists v \in V\left(z, \frac{n-1}{2}\right)^{\otimes k} \quad \text { s.t. } \quad x \cdot v \neq 0
$$

The action is FAITHFUL
a diagrammatic presentation

$$
t_{i}=|\cdots \quad| \bigcap_{i}^{\cup}|\cdots|
$$

product m vertical stacking
up to $\left\{\begin{array}{l}\text { a) homotopy equivalence } \\ b\end{array}\right.$
egg.

"noncrossing matching"

General idea:
D_{i} : Temperley-lieb diagrams
suppose $\Sigma \alpha_{i} D_{i} \neq 0$ choose D : HIGHEST with $\alpha \neq 0$
Claim \exists suitable $v \in V\left(2, \frac{n-1}{2}\right)^{\otimes R}$ s.t. D. $v \neq 0$
AND other D_{i} acts as zero

Setup $\bar{z} \in\{1,2\}^{k} \quad \dot{z}=\left\{i_{1}, i_{2}, . ., i_{k}\right)$

$$
v_{i}=v_{i_{1}} \otimes v_{i_{2}} \otimes . \quad \otimes v_{i_{k}}
$$

Combinatorial Description
Prop. (BBKNZ)
ii $\in\{1,2\}^{k}$. $D:$ TL-diagram
v_{j} appears in D. U_{i} with NoNzero coefficients $\Leftrightarrow \quad j$
is CONSISTENTLY LABELED.
D
lares: distinct integers thru strands: same integers)
egg.

©

\otimes

Induction Step
Prop. (BBKNZ)

$$
\begin{aligned}
& \text { fix } D: T L-\text { diag } \\
& \exists \quad=, j \in\{1,2\}^{k} \text { with }
\end{aligned}
$$

(1) j
(2) if j
is also consistent
D
Consistent
E then $E \geqslant D$
e.g

both diagrams are HIGHER

Surjectivity Statement
$V\left(z, \frac{n-1}{2}\right)^{\otimes k}$: Semisimple when $k \leq n-1$
Prop (BBKNZ)

$$
\begin{gathered}
\left.\operatorname{dim} T L_{k} \mid \xi\right)=\operatorname{dim}_{\left.\operatorname{End}_{D_{n}}\left(V \mid z, \frac{n-1}{2}\right)^{\otimes k}\right)}^{\text {when } 1 \leq k \leq 2(n-1)}
\end{gathered}
$$

Note: easy when semisimple.
use $T L_{k}(\xi) \stackrel{\sim}{\leadsto}$ End Is $_{2 j}\left(V^{\otimes k}\right)$

