Tensor Representations for The Drinfeld Double of The Taft Algebras

Georgia Benkart⁶, Rekha Biswal⁷, Ellen Kirkman⁸, Van Nguyen⁹, Jieru Zhu¹⁰ WINART 2

Okinawa Institute of Science and Technology

November 2020

⁶University of Wisconsin-Madison ⁷Max Planck Institute for Math ⁸Wake Forest University ⁹US Naval Academy ¹⁰Hausdorff Institute of Math

Bratteli Graph

Take n = 11

8

9

Row 1 23 V(4)4 V(5)5V(6)V(4)6V(7)V(5)7V(8)V(6)V(4)

V(2)

V(1)

V(3)

Here V = V(2,0)

Another Directed Path

Here V = V(2, 0)

Truncated Pascal's Triangle

Truncated Pascal's Triangle

Theorem (Folklore Theorem)

$$\dim \mathrm{TL}_k(\xi) = \sum_{i:node \ in \ Row \ k} (\# \ directed \ paths \ with \ target \ i)^2$$

Nonsemisimple Case: $n \le k \le 2n - 2$. (Here n = 5)

Theorem (BBKNZ)

When $1 \leq k \leq 2n-2$,

 $\dim \mathrm{TL}_k(\xi) = \dim \mathrm{End}_{D_n}(V^{\otimes k})$

Theorem (BBKNZ)

When $1 \leq k \leq 2n-2$,

$$\dim \mathrm{TL}_k(\xi) = \dim \mathrm{End}_{D_n}(V^{\otimes k})$$

Corollary (BBKNZ)

$$\operatorname{TL}_k(\xi) \simeq \operatorname{End}_{D_n}(V^{\otimes k})$$

Theorem (Andersen-Stroppel-Tubbenhauer '18)

When $q^n = 1$ and $k \in \mathbb{Z}_{\geq 0}$

$$\operatorname{TL}_k(\xi) \simeq \operatorname{End}_{U_q(\mathfrak{sl}_2)}((\mathbf{k}^2)^{\otimes k})$$

However,

$$\operatorname{TL}_k(\xi) \to \operatorname{End}_{D_n}(V^{\otimes k})$$

fails to be surjective when k > 2n - 2.